

The Elsevier's Chemistry ecosystem

8th July 2023 Marta Da Pian

The research discovery journey

Carbohydrates From mono to poly saccharides

Topics trends, fundings and main players

back to table of contents

Topic overview - SciVal

Glycosylation: Glycosides: Carbohydrates

Countries/Regions	Output 🗸	Views Count 🗸	Citation Impact \checkmark	Citation Count \checkmark
China	512	9,304	0.76	2,531
United States	290	3,918	0.68	1,616
💶 India	205	2,389	0.43	596
• Japan	205	4,328	0.58	687
Germany	110	1,839	0.75	762
France	79	1,402	0.68	334
Russian Federation	69	1,073	0.31	143
Italy	58	1,353	0.81	302
I◆I Canada	47	508	0.50	138
📧 South Korea	47	707	0.41	164

Overall research performance

1,833 Scholarly Output ①

View list of publications

30,281 Views Count (i)

0.60 Field-Weighted Citation Impact (j

7,694 Citation Count (i) 306 International Collaboration ①

37.324 ▼ Topic Prominence percentile (i)

Calculation breakdown

Policy Impact - SciVal

8

Policy Cited Scholarly Output (i)

Citing Policy Documents (i)

6

4 Policy Bodies

Global Chemicals Outlook II - From Legacies to Innovative Solutions: Implementing the

2030 Agenda for Sustainable Development

United Nations Environment Programme

English

View Policy Document View Policy Cited Scholarly Output at Topic Cluster (1)

Policy document

Scaling up Collaborative Action under the 2030 Agenda for Sustainable Development -

Global Chemicals Outlook II Part V

United Nations Environment Programme

Publication Date Policy Body Type Languages

January 01, 2019 Intergovernmental Organisation English

View Policy Document View Policy Cited Scholarly Output at Topic Cluster (1)

Scholarly output

UN sustainable development goals: How can sustainable/green chemistry contribute? Green chemistry as a source of sustainable innovations in the cosmetic industry. Hitce, J., Xu, J., Brossat, M. and 4 more

Publication Year

Current Opinion in Green and Sustainable Chemistry · Volume 13, Pages 164-169 Scopus Source T.57201 C-Glycoside, 3-Hydroxybutanal, Carbohydrates Topic SDG 8: Decent Work and Economic Growth (2022), SDG 9: Industry, Innovation and Infrastructure (2022) SDGs

View Policy Document Mentions (3) More actions V

2018

Scholarly output

A preliminary study for evaluating the dose-dependent effect of D-allulose for fat mass reduction in adult humans: A randomized, double-blind, placebo-controlled trial. Han, Y., Kwon, E.-Y., Yu, M.K. and 5 more

Publication Year	2018
Scopus Source	Nutrients · Volume 10, Issue 2
Торіс	T.17184 Psicose, Tagatose, Allose
SDGs	SDG 3: Good Health and Well-being (2022)

Policy document

Publication Date Policy Body Type Languages

January 01, 2019 Intergovernmental Organisation

Funding Trends - SciVal

fst National Science Foundation

📆 National Institutes of Health

😚 Royal Society Te Apārangi

🛐 Japan Society for the Promotion of Science

Wissenschaftlichen Forschung

> Analyze all Funded Institutions

fst Schweizerischer Nationalfonds zur Förderung der

•

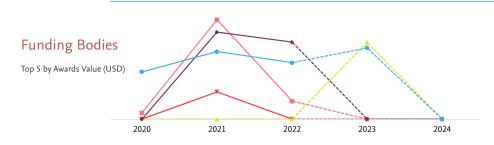
٠

۸

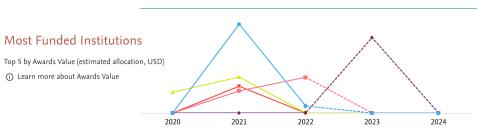
•

.

Awards Value (USD)


5,409,191

3,661,249


2,764,113

1,710,778

607,031

	Awards Value (estimated allocation, USD)	Awards Count
🏦 Osaka University	2,176,231	4
m University of Geneva	1,710,778	1
m Northeastern University	1,310,678	2
fm Tufts University	1,286,353	2
鼠 University of Canterbury	607,031	1

Funding Opportunities – Funding Institutional

9 Funding opportunities

carbohydrate × <u>Clear all</u>

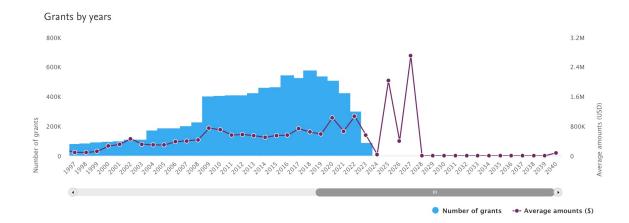
 $\ensuremath{\textcircled{}}$ Save search and find opportunities faster next time.

All 🗸 0 selected 🕁 Track 🗠 Share 🔁 Send to Pure 🐽

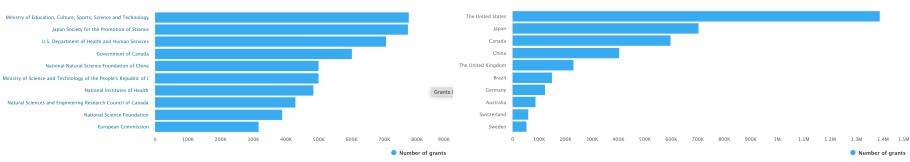
Derek Horton Award in Industrial <mark>Carbohydrate</mark> Chemistry <u>American Chemical Society</u> • Recognition prizes *The Derek Horton Award in Industrial Carbohydrate* Chemistry acknowledges distinguished achievements in and outstanding contributions to industrial carbohydrate chemistry. ... <u>Read more</u>

C Recurring For members only

Deadline in about 24 days Application, 31-Jul-2023 (i)



Up to 1,500 USD with total funding of 4,000 USD


Sorted by Relevance \checkmark

Awarded Grants – Funding Institutional

Grants by funders

Grants by awardee institution countries/regions

Topics definition - eBooks

Carbohydrate

Carbohydrate sugar chains, or glycans, are a major class of biological molecules. From: Drug Discovery Today, 2008

Sample Preparation in Chromatography

Serban C. Moidoveanu, Victor David, in Journal of Chromatography Library, 2002

Derivatization of the OH groups in carbohydrates Carbohydrates (sugars or saccharides) contain in their molecule carbonyl and <u>hydroxyl</u> (aldehyde in <u>aldoses</u> or ketone in ketoses) groups. Carbohydrate <u>derivatization</u> involving both types of functionalities is further discussed in Section 19.9. Also, aspects regarding sample preparation for the analysis of polymeric carbohydrates are discussed in Chapter 20. Carbohydrates commonly exist in their <u>hemiacetal</u> form, and in aqueous solutions the free carbohydrate derivatization is most frequently done at their OH groups, using reagents similar to those for other alcohols.

α-D-Glucopyranose (α-Glup)

β-D-Glucopyranose (β-Glup)

α-D-Glucofuranose (Glu

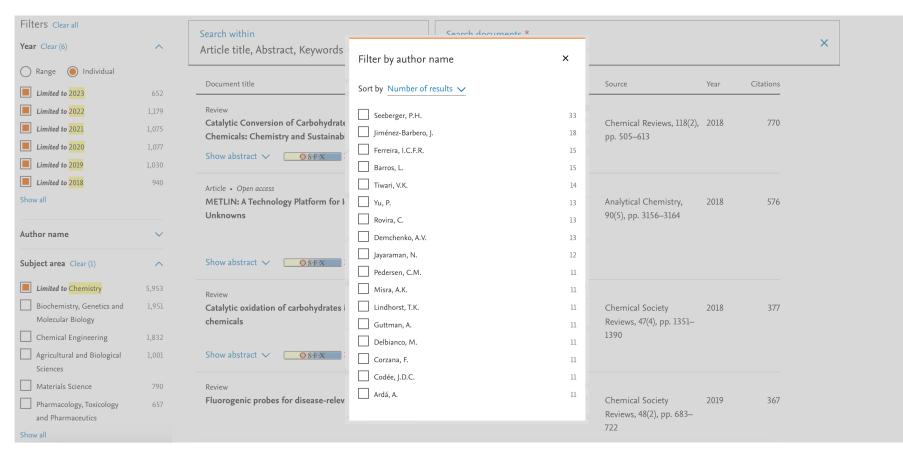
Related terms:

Biomass, Polysaccharide, Graphene , Amino Acid, Aqueous Solution

Advances in polymeric materials for modified atmosphere packaging (MAP)

T.K. Goswami, S. Mangaraj, in Multifunctional and Nanoreinforced Polymers for Food Packaging, 2011

8.4 Post-harvest pathology of fruits and vegetables Vegetables have more available water, less carbohydrates (sugars) and higher pH (near to neutral) than fruits (Manay and Shadaksharaswamy 2006). Due to having more available water and pH near to neutral, bacteria are the pre dominant microflora in vegetables. The common spoilage bacteria are *Erwina* spp., which cause bacterial rots in vegetables. The pH of the fruits is below the level to support bacterial growth. Molds and yeasts (fungi) are major main sources of infection that may occur during growing and postharvest handling of produce (Hotchkiss 1989; Saltveit 1996; Rediers *et al.* 2009). Bacteria gain entry through wounds or natural openings (such as stomata, lenticels, or hydathodes) and multiply in the spaces between plant cells (Tomas-Barberan *et al.* 1997; Lu Shengmin 2009).

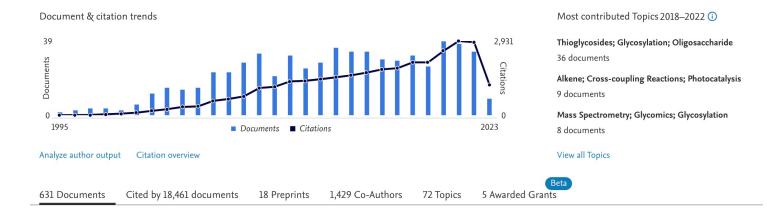

Main players in chemistry (last 5ys) - Scopus

Filters Clear all		Search within Sea	arch documents *			
Year Clear (6)	^		rbohydrate?			
🔵 Range 🛛 🔘 Individual						
Limited to 2023	652	Document title	Authors	Source	Year	Citations
Limited to 2022	1,179	Review				
Limited to 2021	1,075	Catalytic Conversion of Carbohydrates to Initial Platform	Mika, L.T., Cséfalvay, E., Németh, Á.	Chemical Reviews, 118(2), pp. 505–613	2018	770
Limited to 2020	1,077	Chemicals: Chemistry and Sustainability	,	рр. 505–613		
Limited to 2019	1,030	Show abstract 🗸 🚺 🖉 SFX 🛛 🖓 View at Publisher 🤊 Re	lated documents			
Limited to 2018	940	Article • Open access				
Show all		METLIN: A Technology Platform for Identifying Knowns and Unknowns	Guijas, C., Montenegro-Burke, J.R.,	Analytical Chemistry, 90(5), pp. 3156–3164	2018	576
Author name	\sim		Domingo-Almenara, X., Benton, H.P., Siuzdak, G.			
Subject area Clear (1)	^	Show abstract 🗸 🚺 🖉 SFX 🛛 🛪 View at Publisher 🫪 Re	lated documents			
Limited to Chemistry	5,953	Review				
Biochemistry, Genetics and Molecular Biology	1,951	Catalytic oxidation of carbohydrates into organic acids and furan chemicals	Zhang, Z., Huber, G.W.	Chemical Society Reviews, 47(4), pp. 1351–	2018	377
Chemical Engineering	1,832			1390		
Agricultural and Biological Sciences	1,001	Show abstract 🗸 🚺 🖉 SF 🛪 🗖 View at Publisher 🧷 Re	lated documents			
Materials Science	790	Review				
Pharmacology, Toxicology and Pharmaceutics	657	Fluorogenic probes for disease-relevant enzymes	Zhang, J., Chai, X., He, XP., Yoon, J., Tian, H.	Chemical Society Reviews, 48(2), pp. 683–	2019	367
Show all				722		

×

Main players in chemistry (last 5ys) - Scopus

Author profile - Scopus

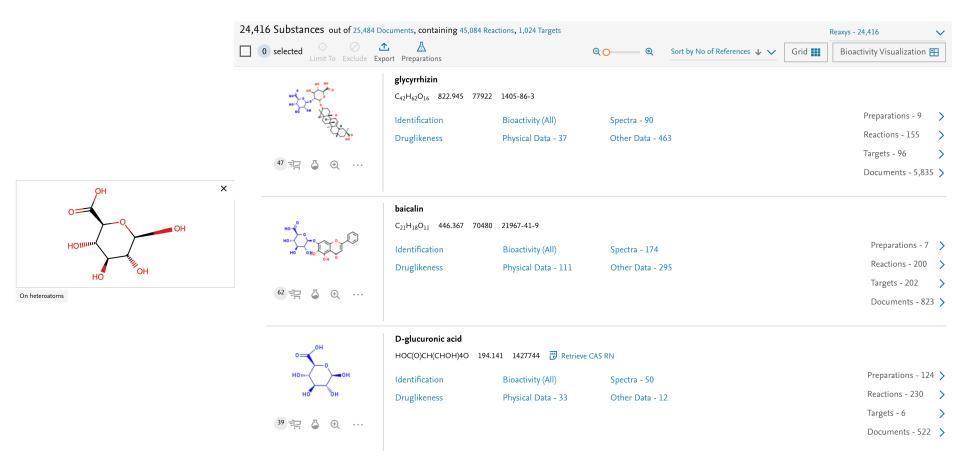


Seeberger, Peter H.

🕕 Freie Universität Berlin, Berlin, Germany 💿 7005614371 🕦 💿 Connect to ORCID 🛛 View more

31,62163189Citations by 18,461 documentsDocumentsh-index View h-graph

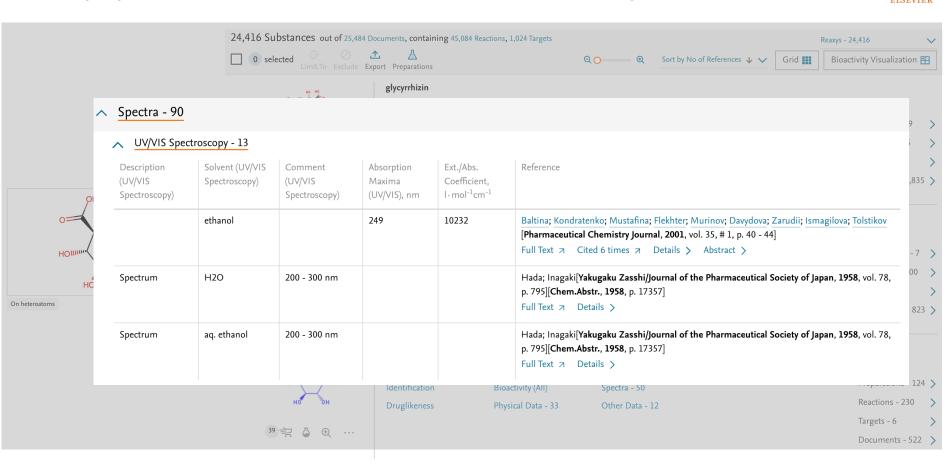
🗘 Set alert 🛛 🗍 Save to list 🤌 Edit profile 🚥 More


Carbohydrates From mono to poly saccharides

Diving into the chemistry

back to table of contents

D-glucuronic acid substructures - Reaxys



Glycyrrhizin Physical data - Reaxys

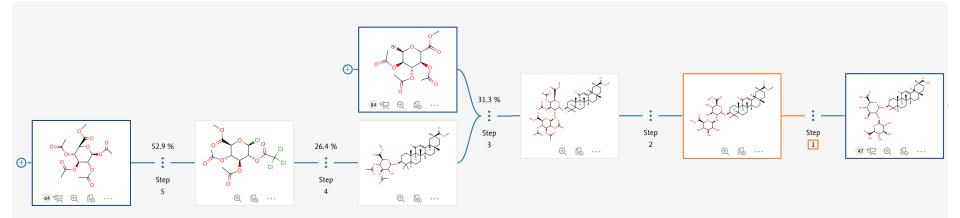
		24,416 Substan			0	tions, 1,024 Targets	Reaxys	- 24,416 🗸
	A Physical Data	o selected		<u>↑</u> 🔬			Q 🔿 🛛 😟 Sort by No of References 🕁 🗸 Grid 🎟 Ria	activity Visualization 🎛
	∧ Optical F	Rotatory Power - 5					Show/Hide columns 🗸	Preparations - 9 🔉
	Type (Optical Rotatory Power)	Concentration (Optical Rotatory Power)	Solvent (Optical Rotatory Power)	Optical Rotatory Power, deg	Wavelength (Optical Rotatory Power), nm	Temperature (Optical Rotatory Power), °C	Reference	Reactions - 155 >
OH	[alpha]	1 g/100ml	methanol	52	589	20	Yang, Yong-An; Tang, Wen-Jian; Zhang, Xin; Yuan, Ji-Wen; Liu, Xin-Hua; Zhu, Hai-Liang[Molecules, 2014 , vol. 19, # 5, p. 6368 - 6381] Full Text ¬ Cited 29 times ¬ Details > Abstract >	Documents - 5,835 >
ношинон	[alpha]	1.0 g/100ml	pyridine	61.7	589	20	Saito; Sumita; Kanda; Sasaki[Chemical and Pharmaceutical Bulletin, 1994, vol. 42, # 5, p. 1016 - 1027] Full Text > Cited 24 times > Details > Abstract >	Preparations - 7 > Reactions - 200 >
n heteroatoms	[alpha]	1.5 g/100ml	ethanol	49.5	589	20	Ichikawa; Ishida; Sakiya; Akada[Chemical and Pharmaceutical Bulletin, 1984, vol. 32, # 9, p. 3734 - 3738] Full Text > Cited 51 times > Details > Abstract >	Targets - 202>Documents - 823>
	[alpha]	c=l	ethanol	46.2	589	17	Lythgoe; Trippett[Journal of the Chemical Society, 1950 , p. 1983,1988] Full Text ㅋ Details >	
	[alpha]	p=3	ethanol	58.6	589	20	Voss; Klein; Sauer[Chemische Berichte, 1937 , vol. 70, p. 131] Full Text 7 Details >	Preparations - 124 >
		39 =	ᇦ	Бладике	ness	Physical Data - 55	Other Data - 12	Reactions - 230 > Targets - 6 > Documents - 522 >

Glycyrrhizin Spectroscopical data - Reaxys

Glycyrrhizin Other data - Reaxys

0=

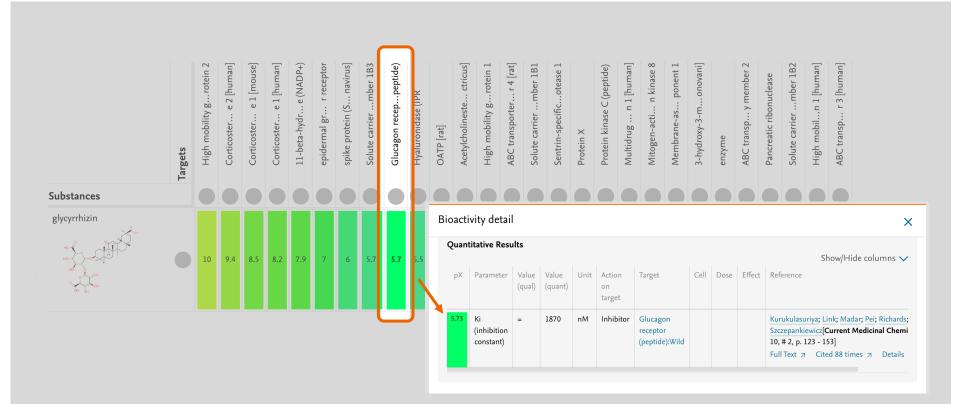
HOIIIII


On heteroatoms

HO

	24,416 Substances out of 25,48		ntaining 45,084 Reactions, 1,024 Targets Reaxys - 24		~			
	 Other Data - 463 Use - 443 							
	Isolated from Natural Source - 20		Show/Hide columns 🗸	reparations - 9	> >			
	Isolated from Natural Source	Location	Reference	argets - 96	>			
4	Glycyrrhiza uralensis; purchased from the Tong-Ren- Tang Company (Beijing, China)		Zhu, Dafu; Su, Haixia; Ke, Changqiang; Tang, Chunping; Witt, Matthias; Quinn, Ronald J.; Xu, Yechun; Liu, Jia; Ye, Yang [Journal of Pharmaceutical and Biomedical Analysis, 2022, vol. 209, art. no. 114538] Full Text ¬ Cited 16 times ¬ Details > Abstract >	ocuments - 5,835 关	>			
O H H H	roots of Glycyrrhiza uralensis Fisch. ex DC.; originated from Hangjinqi, Inner Mongolia		Tsai, Ming-Shao; Shih, Wei-Tai; Yang, Yao-Hsu; Lin, Yu-Shih; Chang, Geng-He; Hsu, Cheng-Ming; Yeh, Reming-Albert; () Shen, Rou-Chen; Wu, Ching-Yuan[Biomedicine and Pharmacotherapy, 2022, vol. 149, art. no. 112802] Full Text ¬ Cited 1 times ¬ Details > Abstract >					
ОН	roots of Glycyrrhiza uralensis; purchased at a commercial herbal market, Human-herb, Gyeongsan, Gyeongbuk, South Korea		Cho, MyoungLae; Jeong, Geum Seok; Kang, Myung-Gyun; Kim, Hoon; Lee, Joon Yeop; Lee, Sang Ryong; Park, Daeui [Molecules, 2020, vol. 25, # 17] Full Text ¬ Cited 19 times ¬ Details > Abstract >	Reactions - 200 Targets - 202 Documents - 823	> >			
	roots of Liquorice; collected in farm of Faculty of Pharmacy, Mansoura University, Mansoura, Egypt, August 2014	supporting information	Abdel Bar, Fatma M.; Elimam, Diaaeldin M.; Mira, Amira S.; El-Senduny, Fardous F.; Badria, Farid A.[Natural Product Research, 2019, vol. 33, # 18, p. 2591 - 2599] Full Text 🤉 Cited 14 times 🤉 Details 🗲 Abstract 🗲					
	root of licorice; obtained from Derech Hatavlinim (also known as Havat Hatavlinim Bethlehem of the Galilee's Specialties, Israel)	Page/Page column 14-15	Current Patent Assignee: ALLIED BIONUTRITION - WO2019/229739, 2019, A1 Full Text 🤉 Details 🔪 Abstract 🔪	Preparations - 124	> >			
	39 ₹₽ &			Targets - 6 Documents - 522	> >			

Glycyrrhizin Synthesis - Reaxys


Step 1	Step 2	Step 3	Step 4	Step 5			🗗 🖬 🛄 🗙				
Conditio	ins					Yield	Reference				
With potassium hydroxide In ethanol; water for 2h; Heating; Yield given;							Saito; Sumita; Kanda; Sasaki [Chemical and Pharmaceutical Bulletin, 1994, vol. 42, # 5, p. 1016 - 1027] Full Text ㅋ Cited 24 times ㅋ Details >				
Step 1	Step 2	Step 3	Step 4	Step 5							
Conditio	ons					Yield	Reference				
With sodium methylate In methanol Ambient temperature;							Saito; Sumita; Kanda; Sasaki [Chemical and Pharmaceutical Bulletin, 1994 42, # 5, p. 1016 - 1027] Full Text > Cited 24 times > Details >				

	Targets	High mobility g rotein 2	Corticoster e 2 [human]	Corticoster e 1 [mouse]	Corticoster e 1 [human]	11-beta-hydr e (NADP+)	epidermal gr r receptor	spike protein (S navirus]	Solute carrier mber 1B3	Glucagon receppeptide)	Hyaluronidase (IPR	OATP [rat]	Acetylcholineste ctricus]	High mobility grotein 1	ABC transporter r 4 [rat]	Solute carrier mber 1B1	Sentrin-specificotease 1	Protein X	Protein kinase C (peptide)	Multidrug n 1 [human]	Mitogen-acti n kinase 8	Membrane-as ponent 1	3-hydroxy-3-m onovani]	enzyme	ABC transp y member 2	Pancreatic ribonuclease	Solute carrier mber 1B2	High mobiln 1 [human]	ABC transp r 3 [human]
Substances																													
glycyrrhizin $f = \int_{0}^{0} \int_{0}^$		10	9.4	8.5	8.2	7.9	7	6	5.7	5.7	5.5	5.2	5.2	5.1	5.1	5	5	5	5	5	5	5	5	4.9	4.9	4.8	4.7	4.7	4.7

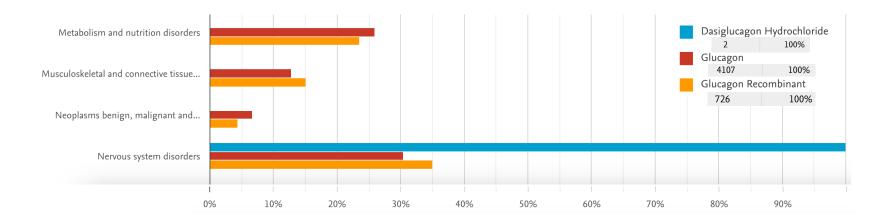
Glycyrrhizin Bioactivity - Reaxys

Deep dive into the receptor - Pharmapendium

Glucagon Receptor

Drugs	Active Substance	Mechanism Of Action 🛈	Primary/Secondary	Source
Dasiglucagon Hydro	Dasiglucagon	Agonist	Primary	FDA
Glucagon	Glucagon	Agonist	Primary	EMA FDA
Glucagon Recombin	-	-	Primary	MOSBY MEYLER
Glucagon Recombin	Glucagon	Agonist	Primary	FDA

🔼 Pharmacokinetic Da	ta	🛱 Metabolizing Enz & Tra	ns. Data	🚱 Drug Safety Data			
Clinical Data Preclinical Data	1177 869	Clinical Data Preclinical Data	20 43	Clinical Data Preclinical Data	2101 473		
All Data	2046	All Data	63	All Data	2574		
💘 Efficacy Data		🔁 FAERS Data		≶ ∏ Activity Data			
K Efficacy Data	5350	FAERS Data Post-Marketing Reports(AERS)	1038	SI Activity Data	165		
	5350 74		1038		165		

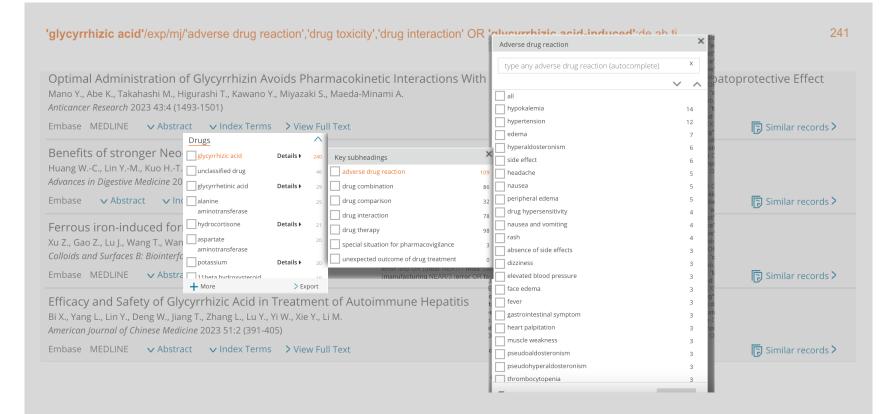

Pharmacokinetic Clinical data - Pharmapendium

Drug 🗸	Ŀ	Dose 🗸	Route 🗸	Parameter 🗸	Parameter Value 🗸 🗸	Source 🗸	Year 🗸
Glucagon Recombinant (Not radiolabelled)		0.25 mg	Intravenous	Cmax	37.0 ng/mL	<i>FDA approval package document:</i> Approval Package (Page:26) View Full Study PDF 980k	1998
Glucagon Recombinant (Not radiolabelled)		0.25 mg	Intravenous	Vd	18.5 L	FDA approval package document: Approval Package (Page:24) View Full Study PDF 1472k	1998
<mark>Glucagon</mark> (Not radiolabelled)		0.25-2 mg	Intravenous	Т1/2	0.13h - 0.3h	FDA approval package document: Clinical Pharmacology and Biopharmaceutics Review (Page:12) View Full Study PDF 5222k	2019
Glucagon (Not radiolabelled)		0.25-2 mg	Intravenous	CL	59.0 L/h	FDA approval package document: Clinical Pharmacology and Biopharmaceutics Review (Page:12) View Full Study PDF 5222k	2019

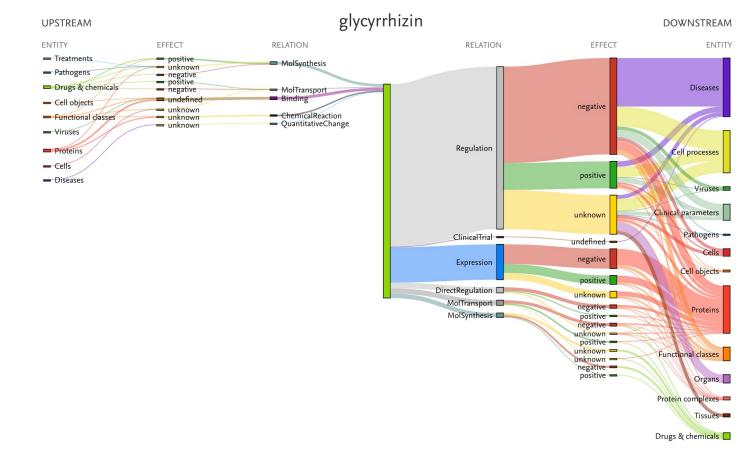
FAERS - Pharmapendium

Glycyrrhizic Adverse drug reaction - Embase

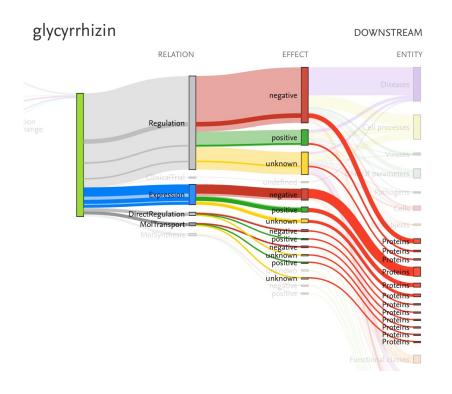
'glycyrrhizic acid'/exp/mj/'adverse drug reaction','drug toxicity','drug interaction' OR 'glycyrrhizic acid-induced':de,ab,ti


Optimal Administration of Glycyrrhizin Avoids Pharmacokinetic Interactions With High-dose Methotrexate and Exerts a Hepato Mano Y., Abe K., Takahashi M., Higurashi T., Kawano Y., Miyazaki S., Maeda-Minami A. Anticancer Research 2023 43:4 (1493-1501)	protective Effect
Embase MEDLINE V Abstract V Index Terms View Full Text	🕞 Similar records >
Benefits of stronger Neo-Minophagen C in acute hepatitis after transarterial chemoembolization therapy for hepatomas Huang WC., Lin YM., Kuo HT., Sheu MJ., Feng YH., Feng IC., Sun CS., Hsieh PH., Lim PP., Chen CH. Advances in Digestive Medicine 2023 10:1 (8-14)	
Embase VAbstract VIndex Terms View Full Text	🕞 Similar records >
Ferrous iron-induced formation of glycyrrhizic acid hydrogels for Staphylococcus aureus-infected wound healing Xu Z., Gao Z., Lu J., Wang T., Wang W., Fan L., Xi J., Han B. <i>Colloids and Surfaces B: Biointerfaces</i> 2023 221 Article Number 112977	
Embase MEDLINE VAbstract VIndex Terms View Full Text	🕞 Similar records >
Efficacy and Safety of Glycyrrhizic Acid in Treatment of Autoimmune Hepatitis Bi X., Yang L., Lin Y., Deng W., Jiang T., Zhang L., Lu Y., Yi W., Xie Y., Li M. American Journal of Chinese Medicine 2023 51:2 (391-405)	
Embase MEDLINE V Abstract V Index Terms View Full Text	🕞 Similar records >

241


Glycyrrhizic Adverse drug reaction - Embase

Biological Insights - EmBiology


Biological Insights - EmBiology

Relation filters

Effect: ALL × Relation

Relation Types: ALL ×

Direction: downstream 🗙

Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats. 2023 A.M. Gendy, A.E. El-Haddad, K.A. Ahmed, A. Soubh, H.M. El-Sadek, M.M. Amin, M.K. El-Sayed

Proteins: ALL X

Concept filters

Relations: 2 Abstract Full text >

Relation Nº1	l snippet ∧	Relation N°2	l snippet ∧
glycyrrhizin has a positive "Expressio relationship with BDNF. 5 References A	n"	glycyrrhizin has a positive "Expressio relationship with BCL2. 6 References >>	n"

Snippet 1 of 1

Furthermore, Glycyrrhizin switched the HMGB1/TLR4/NF- κ B p65 signaling off, reduced IL-6, IL- β , TNF- α , caspase-3, and increased Bcl-2 as well as BDNF.

Snippet 1 of 1


Furthermore, Glycyrrhizin switched the HMGB1/TLR4/NF- κ B p65 signaling off, reduced IL-6, IL- β , TNF- α , caspase-3, and increased Bcl-2 as well as BDNF.

615 results

The Elsevier's Chemistry journey

Thank you!

